Teoria Combinatória dos Números

Samuel Feitosa, Yuri Lima, Davi Nogueira 27 de fevereiro de 2004

O objetivo deste artigo é mostrar algumas propriedades dos números inteiros, que combinadas podem originar problemas bem legais.

1. Dois Problemas Clássicos

Os problemas em questão eram utilizados pelo grande matemático Paul Erdös, que contribuiu fortemente para o desenvolvimento da teoria combinatória dos números, além de inúmeros outros campos da Matemática. Vamos a eles:

Problema 1 Prove que se escolhermos mais do que n números do conjunto $\{1, 2, ..., 2n\}$, então dois desses números são primos entre si.

Solução. Considere os n pares de números $\{1,2\}$, $\{3,4\}$, ..., $\{2n-1,2n\}$. Como são escolhidos mais do que n números, pelo Princípio da Casa dos Pombos pelo menos dois deles pertencem ao mesmo par. Logo, por serem números consecutivos, eles são primos entre si. \square

Problema 2 Prove que se escolhermos mais do que n números do conjunto $\{1, 2, ..., 2n\}$, então um será múltiplo do outro. Isso pode ser evitado com exatamente n números?

Solução. Dado um inteiro positivo m, podemos escrevê-lo de modo único na forma $m=2^ab$, onde $a\geq 0$ e b é ímpar. Chamemos b de parte ímpar do número m.

No conjunto $\{1, 2, ..., 2n\}$, só podem existir n possíveis partes ímpares, a saber: 1, 3, ..., 2n-1. Se escolhermos mais do que n números, pelo Princípio da Casa dos Pombos existem dois números m e n que têm a mesma parte ímpar, ou seja, $a = 2^r b$ e $c = 2^s b$. Mas então, supondo sem perda de generalidade que $r \le s$, concluímos que a|c.

O resultado pode ser evitado com exatamente n números. Um exemplo é escolhermos os números $n+1, n+2, \ldots, 2n$

2. Divisibilidade

Agora estamos interessados na relação de divisibilidade entre os números inteiros. Dois fatos ingênuos mas muito importantes são os seguintes:

- (i) Todo número tem uma fatoração única em números primos, a menos da ordem dos fatores.
- (ii) Dado um cojunto de inteiros, às vezes é útil escolher aquele inteiro que apresenta alguma característica mínima ou máxima, como por exemplo um expoente, um fator primo, MDC e MMC.

Tudo ficará mais claro nos exemplos a seguir.

Problema 3 (Rioplatense/99) Sejam p_1, p_2, \ldots, p_k primos distintos. Considere todos os inteiros positivos que utilizam apenas esses primos (não necessariamente todos) em sua fatoração em números primos, e coloque-os em ordem crescente, formando assim uma seqüência infinita

$$a_1 < a_2 < \ldots < a_n < \ldots$$

Demonstre que, para cada natural c, existe um natural n tal que $a_{n+1}-a_n > c$.

Solução. Suponha, por absurdo, que exista c > 0 tal que $a_{n+1} - a_n < c, \forall n \in \mathbb{N}$. Isso significa que as diferenças entre os termos consecutivos de (a_n) pertencem ao conjunto $\{1, 2, \ldots, c-1\}$, logo são finitas. Sejam d_1, d_2, \ldots, d_r essas diferenças. Seja α_i o maior expoente de p_i que aparece na fatoração de todos os d_i .

Considere então o número $M=p_1^{\alpha_1+1}p_2^{\alpha_2+1}\dots p_k^{\alpha_k+1}$. É claro que M pertence à seqüência, ou seja, $M=a_n$, para algum n. Vejamos quem será a_{n+1} . Por hipótese, existe i tal que $a_{n+1}-a_n=d_i$. Como $a_{n+1}>a_n$, existe um primo p_j que divide a_{n+1} com expoente maior ou igual a α_j+1 . Caso contrário

$$a_n < a_{n+1} < p_1^{\alpha_1+1} p_2^{\alpha_2+1} \dots p_k^{\alpha_k+1} = a_n,$$

absurdo. Daí, $p_j^{\alpha_j+1}|a_n,a_{n+1}\Rightarrow p_j^{\alpha_j+1}|d_i$, novamente um absurdo, pela maximalidade de α_j .

Logo, o conjunto de todas as diferenças não pode ser finito, e, portanto, dado qualquer c>0, existe um natural n tal que $a_{n+1}-a_n>c$. \square

Problema 4 São dados alguns inteiros positivos, cada um não excedendo um inteiro fixo m. Prove que se o mínimo múltiplo comum de quaisquer dois deles é maior do que m, então a soma dos inversos desses números é menor do que 3/2.

Solução. Observação: |x| denota o maior inteiro que não excede x.

Sejam x_1, x_2, \ldots, x_n os inteiros positivos dados. Então $x_i > 1$ (verifique!). Para cada i, existem $\lfloor \frac{m}{x_i} \rfloor$ múltiplos de x_i entre $1, 2, \ldots, m$. Nenhum deles é um múltiplo de x_j , para $j \neq i$, pois caso contrário esse número seria múltiplo de x_i e x_j menor do que m, um absurdo, já que $MMC(x_i, x_j) > m$. Logo, existem

$$\left\lfloor \frac{m}{x_1} \right\rfloor + \left\lfloor \frac{m}{x_2} \right\rfloor + \ldots + \left\lfloor \frac{m}{x_n} \right\rfloor$$

elementos distintos de $\{1, 2, ..., m\}$ que são divisíveis por um dos números $x_1, x_2, ..., x_n$, e portanto nenhum desses números pode ser 1. Assim,

$$\left| \frac{m}{x_1} \right| + \left| \frac{m}{x_2} \right| + \ldots + \left| \frac{m}{x_n} \right| \le m - 1$$

Usando o fato de que $\lfloor x \rfloor > x - 1$ (prove isto), obtemos:

$$m\left(\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}\right) < m + n - 1$$

Se provarmos que $n \leq \frac{m+1}{2}$, concluiremos que:

$$\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} < \frac{m+n-1}{m} = 1 + \frac{n-1}{m} < \frac{3}{2}$$

De fato, note que os máximos divisores ímpares dos números x_1, x_2, \ldots, x_n são todos distintos. Caso contrário, se dois dos x_i compartilham o mesmo máximo divisor ímpar (lembre-se do problema 2), um será múltiplo do outro, e como conseqüência o MMC desses dois será menor do que ou igual m, absurdo! Então, n não excede o número de inteiros ímpares entre $1, 2, \ldots, m$, ou seja, $n \leq \frac{m+1}{2}$, como queríamos. \square

Problema 5 (Índia/98) Seja M um inteiro positivo e considere o conjunto $S = \{n \in \mathbb{N} \mid M^2 \le n < (M+1)^2\}$. Prove que os produtos da forma ab, $com\ a, b \in S$ são todos distintos.

Solução. Provaremos a afirmação por contradição. Suponha o contrário, isto é, que existem $a,b,c,d \in S$ tais que ab=cd. Assuma, sem perda de generalidade, que a < c,d.

Sejam p=mdc(a,c), q=a/p e r=c/p. Então mdc(q,r)=1. Daí, como q|(ab)/p=cd/p=rd, segue que q|d. Seja agora s=d/q. Então b=cd/a=rs, de modo que a=pq, b=rs, c=pr e d=qs, onde p,q,r,s são inteiros positivos.

Como c > a, temos que $r > q \Rightarrow r \ge q+1$. Analogamente, $d > a \Rightarrow s \ge p+1$. Assim,

$$b = rs \ge (p+1)(q+1) = pq + p + q + 1 \ge$$

$$\ge pq + 2\sqrt{pq} + 1 = a + 2\sqrt{a} + 1 \ge$$

$$\ge M^2 + 2M + 1 = (M+1)^2,$$

uma contradição, já que b pertence a S. \square

Problema 6 Mostre que existe um bloco de 2002 inteiros positivos consecutivos contendo exatamente 150 primos. (Você pode usar o fato de que existem 168 primos menores do que 1000.)

Solução. Defina a função $f: \mathbb{N} \to \mathbb{N}$ por f(a) = número de primos entre a, a+1,, a+2001. Como existem 168 primos de 1 até 1000, temos f(1) > 168. Observe que:

- (i) f(a+1) = f(a) + 1 se a é composto e a + 2002 é primo;
- (ii) f(a+1) = f(a) se ambos $a \in a + 2002$ são compostos ou primos;
- (iii) f(a+1) = f(a) 1 se a é primo e a + 2002 é composto.

Esses 3 casos são mutuamente exclusivos. Também, temos que f(2003! + 2) = 0 (verifique). Como f decresce em cada passo por no máximo 1 e parte de um número maior do que 168 até chegar em 0, f(n) deve ser igual a 150 para algum n entre 1 e 2003! + 2, como queríamos. \Box

Problema 7 (Rússia/99) Um conjunto de números naturais é escolhido tal que entre quaisquer 1999 números naturais consecutivos, existe um número escolhido. Mostre que existem dois números escolhidos tais que um deles divide o outro.

Solução. Construa uma tabela com 1999 colunas e 2000 linhas. Na primeira linha escreva $1, 2, \ldots, 1999$. Defina as entradas das futuras linhas recursivamente como segue: suponha que as entradas na linha i são $k+1, k+2, \ldots k+1999$ e que seu produto é M. Então preencha a linha i+1 com $M+k+1, M+k+2, \ldots, M+k+1999$. Todas as entradas na linha i+1 são maiores do que as da linha i. Além disso, toda entrada divide a entrada

imediatamente abaixo (e conseqüentemente toda entrada abaixo desta). Em cada linha existem 1999 números consecutivos, e assim cada linha contém um número escolhido. Como nós temos 2000 linhas, pelo Princípio da Casa dos Pombos existem dois números escolhidos na mesma coluna. Mas daí um deles divide o outro, como desejado. □

Exercício 1 (Ibero/98) Encontre o menor número natural n com a propriedade de que entre quaisquer n números distintos do conjunto $\{1, 2, 3, \ldots, 999\}$, podemos encontrar quatro números distintos a, b, c, d tais que a + 2b + 3c = d.

Exercício 2 (Romênia/99)
$$Seja \ p(x) = 2x^3 - 3x^2 + 2$$
, $e \ sejam$
$$S = \{P(n) \mid n \in \mathbb{N}, n \le 1999\},$$

$$T = \{n^2 + 1 \mid n \in \mathbb{N}\},$$

$$U = \{n^2 + 2 \mid n \in \mathbb{N}\}.$$

Prove que $S \cap T$ e $S \cap U$ têm o mesmo número de elementos.

Exercício 3 (Ibero/99) Seja n um inteiro maior do que 10 tal que cada um de seus dígitos pertence ao conjunto $S = \{1, 3, 7, 9\}$. Prove que n tem algum divisor primo maior do que ou igual a 11.

Exercício 4 Seja n um inteiro positivo e A um subconjunto do conjunto $\{1, 2, 3, \ldots, 4n\}$ com 3n + 1 elementos. Prove que existem $a, b, c \in A$ (distintos) tais que a divide b e b divide c.

Exercício 5 (Polônia/2000) A seqüência p_1, p_2, \ldots de números primos satisfaz a seguinte condição: para n maior ou igual a 3, p_n é o maior divisor primo de $p_{n-1} + p_{n-2} + 2000$. Prove que a seqüência é limitada.

Exercício 6 (Rússia/2000) Prove que o conjunto de todos os inteiros positivos pode ser particionado em 100 subconjuntos não vazios tais que se três inteiros positivos satisfazem a + 99b = c, então dois deles pertencem ao mesmo subconjunto.

Exercício 7 Um subconjunto M de $\{1, 2, 3, \ldots, 15\}$ não contém três elementos cujo produto é um quadrado perfeito. Determine o número máximo de elementos de M.

2. Construindo e Particionando Conjuntos

Os dois tipos de problemas que tratam de conjuntos são:

- (i) construir um conjunto de inteiros com os elementos satisfazendo condições dadas: analise alguns casos pequenos e tente indução;
- (ii) decompor um conjunto de inteiros em subconjuntos: procure definir os subconjuntos com alguma propriedade em especial.

Vamos construir...

Problema 8 (EUA/98) Prove que, para cada inteiro $n \geq 2$, existe um conjunto S de n inteiros positivos tal que $(a - b)^2 | ab$ para quaisquer a e b distintos pertencentes a S.

Solução. Na hora de montar qualquer exemplo de conjunto, faça sempre casos pequenos. Considere $n=2,\ n=3,\ n=4,\ n=5$ e veja a cara do exemplo. Lembre-se de sempre seguir um padrão nessa hora, pois se o exemplo que você achar para 3 tiver alguma coisa em comum com o exemplo para 2, o exemplo para 4 for parecido com o para 3 e assim por diante... ótimo! O resto sairá por indução.

Depois de fazer alguns casos pequenos, encontramos a cara do conjunto S: dado n, construiremos S com n elementos, com (a-b)|a e (a-b)|b para todos a,b pertencentes a S. Assim, S claramente satisfaz o enunciado. Comece com o conjunto $\{2,3\}$.

Passo indutivo: suponha que encontramos um conjunto S, com |S| = n, satisfazendo as condições do enunciado. Seja m o MMC dos números de S. Tome o conjunto $S' = \{M+S\} \cup \{m\}$ (Se X é um conjunto e a é um número qualquer, o conjunto X+a ou a+X é dado por $\{a+b \mid b \in X\}$.) Logo |S'| = n+1. Pelos casos particulares, desconfiamos que S' satisfaz as propriedades dadas. Vejamos... Sejam a',b' elementos quaisquer de S'. Podemos considerar dois casos:

<u>Caso 1 -</u> a' = m + a, b' = m + b: então a' - b' = (m + a) - (m + b) = a - b. Como (a - b)|a, (a - b)|b (por indução) e m é múltiplo comum de a e b, segue que (a' - b')|(m + a) = a' e (a' - b')|(m + b) = b', como queríamos.

<u>Caso 2 -</u> a' = m + a e b' = m: então $a' - b' = m + a - m = a \Rightarrow (a' - b')|a'$ e (a' - b')|b', já que m é múltiplo de a.

Pronto! \Box

Problema 9 (Rioplatense/2002) Seja A um conjunto de números inteiros positivos. Dizemos que um conjunto B de inteiros positivos \acute{e} uma base de A se todo elemento de A pode ser escrito como soma de elementos de algum subconjunto de B e, dados quaisquer dois subconjuntos de B, a soma dos elementos de cada subconjunto \acute{e} distinta. Dado um inteiro positivo n, mostre que existe um menor número r(n) tal que qualquer conjunto A de n elementos admite uma base com $n\~{a}o$ mais que r(n) elementos.

Solução. Lema: Dado um conjunto X de naturais tal que, se tomarmos quaisquer dois elementos, a maior potência de 2 que divide cada um desses elementos é distinta, então quaisquer dois subconjuntos de X têm a soma de seus elementos distintas (note que esta é exatamente uma das condições exigidas no enunciado).

Fica ao cargo do leitor demonstrar este lema.

Vamos realizar uma série de operações que nos conduzam até uma base de A. Começamos separando os elementos de A em subconjuntos S_i (os i percorrem todos os inteiros não negativos. Pode ocorrer de alguns S_i serem vazios): j pertence a S_i se o expoente da maior potência de dois que divide j é i. Em cada passo, vamos operar o conjunto de menor índice, não vazio e não unitário da seguinte forma: escolhemos o menor elemento e o subtraímos de todos os outros do seu conjunto, deixando ainda este menor elemento intacto em seu subconjunto. Se $S_i = \{a_1, a_2, \ldots, a_k\}$, com $a_1 < a_2 < \ldots < a_k$, fazendo as diferenças obtemos:

$$a_2 - a_1, a_3 - a_1, \dots, a_k - a_1.$$

Como a maior potência de dois que divide a_1 e a_j é a mesma, o expoente da maior potência de dois que divide $a_j - a_1$ é maior que i, digamos i + r. Então coloquemos $a_i - a_1$ no conjunto S_{i+r} (caso já exista tal elemento neste conjunto podemos descartar $a_j - a_1$ e apenas retiá-lo de S_i). Fazemos isto com todos os números: $a_2-a_1, a_3-a_1, \ldots, a_k-a_1$. Obteremos assim algum B_l (onde B_t é a reunião de todos os subconjuntos após t passos). Ficará apenas a_1 em S_j . Veja que todos os números $a_2 - a_1, a_3 - a_1, \ldots, a_k - a_1$ foram para S_j 's com índices maiores do que o conjunto em que eles estavam. Assim qualquer S_i com j menor ou igual a i será unitário ou vazio. Veja ainda que os elementos de B_{l-1} ainda podem ser obtidos como soma de elementos distintos de B_l , pois $a_i = (a_i - a_1) + a_1$ e tanto a_1 como $a_i - a_1$ estão em B_l . Para os elementos que não foram alterados não há nada a fazer. Note que a quantidade de elementos de B_l não é maior do que a quantidade de elementos de B_{l-1} , e que a quantidade de conjuntos unitários cresce. Logo, não podemos operar infinitamente, de modo que em algum momento teremos apenas conjuntos unitários e vazios. Seja B_m a reunião destes conjuntos. Pelo Lema, se tomarmos dois suconjuntos de B_m e somarmos seus elementos obteremos somas distintas. Como cada elemento de B_{l-1} pode ser escrito como soma de elementos distintos de B_l , então retrocedendo obtemos que: cada elemento de B_{l-2} pode ser escrito como soma de elementos distintos de B_{l-1} ... até que cada elemento de A pode ser escrito como soma de elementos distintos de B_1 . Então, cada elemento de A pode ser escrito como soma de elementos distintos de B_m (intuitivamente o que fizemos foi "quebrar" os

elementos de A em pedacinhos para formar uma base. Para obter qualquer elemento de A, basta juntar esses pedacinhos). Logo B_m é uma base de A.

Veja que B_m tem no máximo n elementos. Para deixar tudo o que fizemos mais claro, consideremos o exemplo: $A = \{3,7,8,24,80\}$ $S_0 = \{3,7\}, S_3 = \{8,24\}, S_4 = \{80\}$ operando: $S_0 = \{3\}, S_2 = \{4\}, S_3 = \{8,24\}, S_4 = \{80\}$ e $B_1 = \{3,4,8,24,80\}$ operando: $S_0 = \{3\}, S_2 = \{4\}, S_3 = \{8\}, S_4 = \{16,80\}$ e $B_2 = \{3,4,8,16,80\}$ operando: $S_0 = \{3\}, S_2 = \{4\}, S_3 = \{8\}, S_4 = \{16\}, S_6 = \{64\}$ e $B_3 = \{3,4,8,16,64\}$

Veja que B_3 é uma base de A. Até agora, sabemos que dado A de n elementos podemos exibir uma base com não mais de n elementos. Daí, um forte candidato para nosso r(n) é n. Para isso, basta mostrarmos que existem conjuntos de n elementos tais que eles não adimitem uma base com menos de n elementos. Considere o conjunto $C = \{1, 2, 4...2^{n-1}\}$. Uma base para C deve conter o próprio C (prove isto), logo deverá ter pelo menos n elementos.

Problema 10 Seja n um inteiro positivo. Existe uma permutação a_1 , a_2 , ..., a_n dos números 1, 2, ..., n tal que não existem índices i < k < j para os quais $a_k = \frac{1}{2}(a_i + a_j)$?

Solução. Sim, é possível, e basta mostrarmos o resultado para os números da forma $n=2^k$. O resultado geral seguirá desse. Por exemplo, se queremos achar a permutação para n=2000, é suficiente acharmos uma para n=2048 e depois apagarmos os números de 2001 até 2048.

Vamos mostrar o resultado por indução. Para k=1 e k=2, podemos tomar as permutações 1,2 e 2,4,1,3. Suponha agora que a_1,a_2,\ldots,a_{2^k} é uma permutação dos números $1,2,\ldots,2^k$ que dá certo. Considere as seqüências $2a_1,2a_2,\ldots,2a_{2^k}$ e $2a_1-1,2a_2-1,\ldots,2a_{2^k}-1$. A primeira contém todos os números pares entre 1 e 2^{k+1} e a segunda todos os ímpares nesse mesmo intervalo. Daí,

$$2a_1, 2a_2, \ldots, 2a_{2^k}, 2a_1 - 1, 2a_2 - 1, \ldots, 2a_{2^k} - 1$$

é uma permutação de $1,2,\ldots,2^{k+1}$. Essa é a seqüência que estávamos procurando. Dois números de metades distintas da permutação acima têm paridades distintas, logo a média aritmética não é inteira. Agora, se tivéssemos i < k < j tais que

$$\frac{2a_i + 2a_j}{2} = 2a_k \Rightarrow \frac{a_i + a_j}{2} = a_k,$$

um absurdo, pela hipótese de indução. O mesmo ocorre se a_i e a_j estão na outra metade. Esse é o fim do nosso passo indutivo, e o problema está

provado. \square

Agora, vamos particionar conjuntos...

Problema 11 (Reino Unido/99) Para cada inteiro positivo n, seja $S_n = \{1, 2, ..., n\}$.

- (a) Para quais valores de n é possível expressar S_n como união de dois subconjuntos não vazios disjuntos tais que os elementos em ambos os subconjuntos possuem a mesma soma?
- (b) Para quais valores de n é possível expressar S_n como união de três subconjuntos não vazios disjuntos tais que os elementos em cada subconjunto possuem a mesma soma?

Solução. (a) Seja f(T) a soma dos elementos de um conjunto T. Para a condição ser satisfeita, $f(S_n) = [n(n+1)]/2$ deve ser par, e, portanto, devemos ter n = 4k - 1 ou n = 4k. Bom, até agora, isso é tudo o que temos. Será que sempre é possível para n = 4k e n = 4k - 1? A resposta é sim, e vem depois de analisarmos alguns casos pequenos. O exemplo da partição de S_n que satisfaz o pedido é dado em seguida:

Caso 1 - n = 4k:

Tome $\overline{A} = \{2, 3, 6, 7, 10, 11, \ldots, n-2, n-1\}$, o conjunto formado pelos segundos e terceiros elementos das quádruplas $(1, 2, 3, 4), (5, 6, 7, 8), \ldots, (n-3, n-2, n-1, n)$, e $B = \{1, 4, 5, 8, \ldots, n-3, n\}$. Logo, A, B satisfazem o enuciado (verifique).

Caso 2 - n = 4k - 1:

Tome $\overline{A}=\{1,2,5,6,9,10,\ldots,n-2,n-1\}$, o conjunto formado por 1, 2 e pelos segundos e terceiros elementos das quádruplas $(4,5,6,7),(8,9,10,11),\ldots,(n-3,n-2,n-1,n),$ e $B=\{3,4,7,8,11,\ldots,n-3,n\}$. Logo, A,B satisfazem o enunciado (verifique).

(b) Antes de tudo, devemos ter que 3|[n(n+1)]/2. Veja que a construção é impossível para n=3. Logo, n deve ser da forma 3k+1 ou 3k+3, onde $k \geq 1$. Vamos mostrar por indução em n que sempre é possível para os números da forma acima.

Os casos iniciais que precisamos são: $S_5 = \{5\} \cup \{1,4\} \cup \{2,3\}, S_6 = \{1,6\} \cup \{2,5\} \cup \{3,4\}, S_7 = \{8,4\} \cup \{7,5\} \cup \{1,2,3,6\} \text{ e } S_9 = \{9,6\} \cup \{8,7\} \cup \{1,2,3,4,5\}.$ Agora suponha que nós podemos particionar S_{n-6} em $A \cup B \cup C$, com f(A) = f(B) = f(C). Então:

$$f(A \cup \{n-5, n\}) = f(B \cup \{n-4, n-1\}) = f(C \cup \{n-3, n-2\}),$$
completando o passo indutivo.

Problema 12 Existem 10 inteiros distintos tais que a soma de quaisquer 9 deles é um quadrado perfeito?

Solução. Sim, existem. Escreva $S = a_1 + a_2 + \ldots + a_{10}$ e considere o sistema linear de equações:

$$S - a_1 = 9 \cdot 1^2$$

$$S - a_2 = 9 \cdot 2^2$$

$$\vdots$$

$$S - a_{10} = 9 \cdot 10^2$$

Somando todas essas equações,

$$9S = 9 \cdot (1^2 + 2^2 + \ldots + 10^2)$$

de modo que

$$a_k = S - 9k^2 = 1^2 + 2^2 + \dots + 10^2 - 9k^2.$$

Então, todos os a_k 's são inteiros distintos e a soma de quaisquer 9 deles é um quadrado perfeito.

Exercício 8 (Hungria-Israel/99) Dado um conjunto X, defina

$$X' = \{s - t \mid s, t \in X, s \neq t\}.$$

Seja $S = \{1, 2, ..., 2000\}$. Considere dois conjuntos $A, B \in S$ tais que $|A||B| \ge 3999$. Prove que $A' \cap B' \ne \emptyset$.

Exercício 9 Um conjunto \mathcal{L} de números é chamado livre de somas se $x+y \neq z$ para quaisquer $x, y, z \in \mathcal{L}$. Qual é o maior número de elementos que pode ter um subconjunto livre de somas de $\{1, 2, 3, \ldots, 2n + 1\}$?

Exercício 10 (Balcânica/92) Seja $n \geq 3$. Determine o menor inteiro positivo f(n) tal que, em todo subconjunto de $A = \{1, 2, ..., n\}$ que contém f(n) elementos, existem $x, y, z \in A$ primos dois a dois.

Exercício 11 (Romênia/2002) Dado um inteiro positivo n, seja f(n) o número de escolhas de sinais + e - na expressão $\pm 1 \pm 2 \pm \cdots \pm n$ de modo que a soma obtida seja zero. Mostre que f(n) satisfaz as seguintes condições:

(a)
$$f(n) = 0$$
 para $n \equiv 1 \pmod{4}$ ou $n \equiv 2 \pmod{4}$;

(b)
$$2^{\frac{n}{2}-1} \le f(n) < 2^n - 2^{\lfloor \frac{n}{2} \rfloor + 1}$$
, para $n \equiv 0 \pmod{4}$ ou $n \equiv 3 \pmod{4}$.

Exercício 12 (MOSP/99) Seja X um conjunto finito de inteiros positivos e A um subconjunto de X. Prove que existe um subconjunto B de X tal que A é igual ao conjunto dos elementos de X que dividem um número ímpar de elementos de B.

Exercício 13 (Bielorússia/2000) Seja $M = \{1, 2, ..., 40\}$. Ache o menor inteiro positivo n para o qual é possível particionar M em n subconjuntos disjuntos tais que, sempre que a, b, c (não necessariamente distintos) pertencem ao mesmo subconjunto, então $a \neq b + c$.

Exercício 14 (Hungria/2000) Dado um número k e mais do que 2^k inteiros distintos, prove que um conjunto S de k+2 desses números pode ser escolhido de modo que, para qualquer inteiro positivo $m \le k+2$, todos os subconjuntos de S com m elementos têm somas distintas.

Exercício 15 (Irã/99) Seja $S = \{1, 2, ..., n\}$ e suponha que $A_1, A_2, ..., A_k$ são subconjuntos de S tais que para quaisquer $1 \le i_1, i_2, i_3, i_4 \le k$ tenhamos

$$|A_{i_1} \cup A_{i_2} \cup A_{i_3} \cup A_{i_4}| \le n - 2.$$

Prove que $k \leq 2^{n-2}$.